Master exam Summer term 2022

Subject: Microeconometrics and machine learning Examiner: Prof. Regina T. Riphahn, Ph.D.

Preliminary remarks:

Grading:	A maximum of 60 points can be earned. The points for each problem are
	indicated in parentheses. They correspond to the recommended time to be
	spent on each problem (in minutes).

- Allowed tools: Calculator
 - Dictionary

Important note: If a piece of information or a necessary assumption for the calculation is missing, note it, and make a plausible assumption for the missing value.

Problem 1 (20 points)

You are interested in the determinants of graduating with honors. The data set contains observations on U.S. students.

Variable	Description
honcomp	=1, if a student graduates with honors; $=0$ otherwise
female	=1, if a student is female; $=0$, if a student is male
read	standardized test score in reading
science	standardized test score in science

The following model is estimated: $honcomp_i = \Lambda(\beta_1 + \beta_2 female_i + \beta_3 read_i + \beta_4 science_i)$

Logit estimates	5			Numbe	r of obs	=	200
				LR ch	i2(3)	=	71.05
				Prob	> chi2	=	0.0000
Log likelihood	= -80.11818	8		Pseud	o R2	=	0.3072
honcomp	Coof	9+d Err			 ۲۵۶۱۷	conf	Tntorwoll
				F > Z			
female	1,482498	.447399	3.31	0.001	. 60	5611	2.359384
read	.103536	.025766	4.02	0.000	.05	3035	.154037
science	.094790	.030453	3.11	0.002	.03	5102	.154478
_cons	-2.467000	.500000	-4.93	0.000	-3.44	7000	-1.487000

Note: Round all results to the <u>third</u> digit.

- 1.1 Interpret the coefficient of female in terms of its direction and statistical significance. (2 points)
- 1.2 The Stata output above shows the test statistic of a likelihood ratio test. State the null and alternative hypothesis of the test for the case at hand and briefly describe verbally the basic idea and the decision logic of the test procedure. (3 points)
- 1.3 Calculate the marginal effect of the variable $read_i$ for women with a standardized test score in science of 7 and in reading of 5. Interpret the result. Note: $ME(\mathbf{x}) = p \cdot (1-p) \cdot \beta_x$ (6 points)
- 1.4 Describe the idea of the maximum likelihood (ML) method. In what situation may the ML estimator show a local optimum? (3 points)
- 1.5 The ML estimator for β in the linear regression model is equivalent to the OLS estimator under the assumption of normally distributed error terms. If $\epsilon_i \sim N(0, \sigma^2 I)$, the distribution of y_i with $y_i = x'_i \beta + \epsilon_i$ is given by

$$f(y_i|x_i'\beta,\sigma_\epsilon^2) = \frac{1}{\sqrt{2\pi\sigma^2}}exp\{-\frac{1}{2\sigma^2}(y_i - x_i'\beta)^2\}.$$

Assume independence of the observations i = 1, 2, ..., N. Establish the likelihood function and derive the log-likelihood function for the normally distributed y. Explain verbally how coefficient estimates are obtained. (6 points)

Problem 2 (10 points)

You would like to investigate the determinants of the length of family holidays. For this purpose, you have information from 7,543 families.

Varia	ble De	scription							
Numtrau Holi Ag Numch In	veld nun day =1 gem age hild nun vinc log	number of travel days =1, if the family has gone on holiday; =0, otherwise age of the mother in years number of children logarithmised monthly household income							
Heckman select (regression mo	tion model odel with sam	• two-step e: ple selectio	stimates on)	Number	of obs = Selected = Nonselected = hi2(3) =	7,543 6,086 1,457 72.50			
				Prob >	chi2 =	0.0000			
	Coef.	Std. Err.	z	P> z	[95\% Conf.	Interval]			
Numtraveld Agem Numchild _cons	.65074 15269 1.95216	.09137 .96854 17.95557	7.12 -0.16 0.11	0.000 0.875 0.913	.47166 -2.05099 -33.24011	.82983 1.74560 37.14443			
Holiday Ininc Agem Numchild _cons	 .007136 000149 006056 .468362	.00218 .00138 .01441 .14261	3.27 -0.11 -0.42 3.28	0.001 0.914 0.674 0.001	.002859 002860 034303 .188862	.011413 .002563 .022191 .747869			
lambda	 -14.19619 +	5.3220	-2.67	0.008	-24.62714	-3.765243			
rho sigma	-1.00000 14.19619								

Note: Round all results to the *third* digit.

- 2.1 Explain in general and with reference to the analysis of trip length the meaning of endogenous sample selection. What consequences follow from endogenous sample selection for least squares estimation? Give an example why this can be the case in the current application. (3 points)
- 2.2 State the properties which the variable *lninc* must have in order to be an appropriate exclusion restriction. Explain whether the variable is suitable as an exclusion restriction in the present case. (3 points)
- 2.3 Which statistic in the Stata output above can be used to assess the selectivity of the sample? What does the statistic measure in general? Explain whether selectivity is present in the example. (3 points)
- 2.4 Which alternative estimation approaches could be used for this dependent variable ignoring sample selection? (1 point)

Problem 3 (14 points)

You want	to examine	the effect	of a	health	care	reform	on	the	number	of	doctor	visits.	You	have	a d	ata
set with 2	2,227 observa	ations and	the f	followin	ıg var	riables:										

_

Variable	Description
numvisit reform	number of doctor visits in the past year $=1$, if the observation took place after the reform: $=0$, otherwise
age	age in years
baan loginc	=1, if poor health condition indicated; =0, otherwise log household income

You estimate a Negbin II model with *numvisit* as dependent variable and obtain the following output:

Negative bino	mial regressi	on		Number LR chi2	of obs = (5) =	2,227 300.46
Dispersion	= mea	n		Prob >	chi2 =	0.0000
Log likelihoo	d = -4563.390	5		Pseudo	R2 =	0.0319
numvisit	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
reform	137408	.051133	-2.69	0.007	237627	037188
age	.005570	.002399	2.32	0.020	.000866	.010273
educ	005319	.011477	-0.46	0.643	027814	.017174
badh	1.131247	.074780	15.13	0.000	.984679	1.277814
loginc	.037129	.007119	5.22	0.004	0.023175	.051083
_cons	l407475	.533606	-0.76	0.445	-1.453323	.638374
/lnalpha	.002129	.047539			0910466	.0953047
alpha	1.002131	.0476408			.9129752	1.099994
LR test of al	pha=0: chibar	2(01) = 2760	.88		Prob >= chib	ar = 0.000

Note: Round all results to the <u>third</u> digit.

- 3.1 Interpret the magnitude and statistical significance of the estimated coefficients of the variables *reform* and *loginc*. (5 points)
- 3.2 Briefly explain the meaning of overdispersion and its consequence for Poisson estimation results. (2 points)
- 3.3 Explain two differences between a Poisson and a Negbin II model. (2 points)
- 3.4 Describe how you can test for overdispersion in this example with the given output. Also, state the hypotheses, the test statistic, and your test decision. Does the test confirm overdispersion? (5 points) Note: For the Negbin II model we have: $Var(y_i|x_i) = \lambda + \alpha \lambda^2$.

Problem 4 (16 points)

You would like to fit a model to predict hourly wages based on the following data:

Variable	Description
hwage	hourly wage in Euro
age	age in years
educ	education in years
tenure	tenure with current employer in years
n = 915	

You have fitted a regression tree using hourly wage as dependent variable and three features (age, educ, tenure) as explanatory variables.

- 4.1 Is the fitted tree a classification tree? Explain your answer. (2 points)
- 4.2 Interpret the right leave (22.752, n = 10, 1%) of the tree. (4 points)
- 4.3 Mention two weaknesses of trees. (2 points)
- 4.4 Explain the purpose of bagging and briefly describe the approach. (3 points)
- 4.5 Describe the procedure of k-Fold Cross Validation with k = 10 in general and the decision that is based on it. (5 points)